
John J. Heim
Rensselaer Polytechnic Institute

John J. Heim
Rensselaer Polytechnic Institute

ABSTRACT:
Using a simplified Klein/Fair structural model of the U.S. economy, estimated using 1960 – 2000 data, the paper finds that the 12.9% dollar decline 2000-2009 had a positive effect on exports, but mildly negative effects for domestically produced investment and consumer goods. It is shown that the negative effects occurred because the negative income effects of rising import prices offset the more positive effects of substitution towards domestic goods. The estimated overall negative effect on the GDP is modest: 1.7% over the nine years, or about a fifth of a percent per year. It is estimated this decline in the dollar reduced the trade deficit $140.7 billion. This decline is estimated to have increased U.S. net asset position by an $88.6 billion. This paper updates R.P.I. Economics Department Working Paper # 905 to include effects of exchange rate changes during 2009. JEL classification codes: E00, F40, F43.77

Keywords: Macroeconomics, International Trade, Imports, Exports, Exchange Rate

OUTLINE

1. Introduction
2. Methodology
3. The consumer demand model
4. The investment demand model
5. The exports demand model
6. The tax growth model
7. Calculating multiplier, accelerator and crowd out effects
8. Income and Substitution Effects of declining exchange rates
9. Three methods for calculating the impact of a change in the exchange rate
 9.1. Method 1: Simple multiplier applied to domestic consumption, investment and export effects
 9.2. Method 2: Large scale econometric model method
 9.3. Method 3: Keynesian IS curve method
10. Exchange rate effects on the trade deficit and ownership of U.S. assets
11. Conclusions
References

1. INTRODUCTION

A decline in U.S. real exchange rate may make goods Americans import more expensive, thereby reducing real income. This income effect may reduce U.S. demand for both domestic and imported goods. The decline may also cause a substitution effect by making imports more expensive, shifting demand toward cheaper American goods. Also, the cheaper U.S. dollar may have a positive income effect by increasing American exports.

While all of these effects may occur to some extent or another, the real question is whether exchange rate changes bring about major differences in the demand for domestic goods and imports? Or is it possible that even major changes in America’s exchange rate only bring about marginal, relatively minor effects because of effects offsetting the other, or only being of a small magnitude?

These are empirical questions. This study answers them using estimates of how changes in the Federal Reserve's real broad exchange rate affected U.S. demand for both domestic and imported goods during 1960-2000, and applying the findings to the 2000-2009 period. Econometric estimates of the impact of the exchange rate on U.S. demand for imports and domestic goods are used. These econometric estimates control for other important variables affecting consumer and investment demand and are those
developed in Heim (2008 a, b, c). They are used as a basis for simulating the initial impact of a change in the exchange rate, holding all other variables affecting demand constant. The exchange rate variable’s regression coefficients are used as the measure of initial impact. The initial impact is then multiplied by estimates of multiplier/accelerator effects derived from the same econometric model, to get estimates of the total impact on demand. Three separate methods for calculating these effects on demand are presented. Each reaches the same conclusions about the effects of the 2000 - 2009 exchange rate changes on the U.S. economy, when the U.S. Federal Reserve’s real "Broad" trade weighted exchange rate index declined 12.9%, from 104.80 to 91.90.

Finally, the paper also estimates the extent to which exchange rate – induced price increases in imports reduce the trade deficit and thereby reduce transfers of U.S. assets to other nations or their citizens, as required to pay for trade deficits. U. S. asset ownership was estimated to be $67 billion greater due to the reduced need to transfer assets to foreigners each year to finance trade deficits.

2. METHODOLOGY

This study examines how real declining exchange rates 2000 – 2009 have affected U.S. demand for domestic and imported goods. It uses a seven behavioral equation model of the U.S. economy (three consumer demand equations, three investment demand equations and an export demand equation) to estimate the GDP and its components. The three consumption equations are for total, domestically produced and imported consumer goods, the three investment equations are for total, domestically produced and imported investment goods. The seventh equation estimated export demand. The econometric approach is patterned after the more detailed (30 behavioral equations) demand – driven econometric models of Ray Fair (2004). Fair, for example, has four separate behavioral equations for household demand; whereas the model used in this study has two consumption equations: one for domestically produced consumer goods and one for imports. Fair’s model, as does this model, estimates the GDP additively, from behavioral equation estimates of consumer, investment, export and import demand. In both models, government spending on goods & services is treated as exogenous. Finally, like Fair’s model, the model here is Keynesian i.e., demand driven in orientation, as were their antecedents produced by Lawrence Klein and the Cowles Commission. As was recently noted

...Keynes’s General Theory provides the foundation for much of our current understanding of economic fluctuations...(Mankiw 2010)

There are some differences between the models aside from size. All imports in Fair’s model are estimated as one variable and imports are modeled as simple functions of GDP growth. In the model used here, consumer and investment imports are modeled separately and as functions of the same large number of specific determinants of consumer and investment demand found to be important determinants of demand for domestically produced consumer and investment goods, such as wealth, profits, interest rates, depreciation, credit crowd out, etc. In Fair’s model exports are exogenous, but in the model used here exports are endogenous. They are determined by the exchange rate and a proxy for our trading partners’ economic growth rate. Another difference is that Fair commonly uses lagged values of an equation’s dependent variable on the right hand side of an equation to explain the movement in the dependent variable; the model used here does not. Its main objective is to explain the past influence of specific variables, especially the real exchange rate, on consumption, investment and the GDP. Lagged values of dependent variables may improve the accuracy of predictions, which is a core objective of Fair’s model, but tend to hide from us the underlying variables that drive them (as well as the current dependent variable). Hence, they provide an inadequate explanation of underlying structural relationships. That said, in quarterly data models, lags may be needed simply to capture lagged adjustment effects. The annual data used in this model reduces that need appreciably.

Also because of Fair’s findings, equations in this model do not include variables to account for rational expectations – driven behavior, since Fair, like others before him, found little support for these issues in extensive tests in his own models, (Fernandez-Villaverde, 2008). Fair also found his own model (a Cowles – Commission type model, like the model used here) performed better than a VAR model against
which he tested it, and generally better in tests against an autoregressive components (AC) model. (Fernandez-Villaverde, 2008).

A significant difference between this study and Fair’s models is the way in which autocorrelation is treated. Generally, here it is dealt with by first differencing data. In Fair, it is dealt with by leaving the data in levels and using standard autocorrelation control AR(i) variables. Generally, though not always, the first differencing used here was successful in bringing Durban Watson statistics up to desirable levels. This approach also provided two critically important additional benefits:

1. First differencing significantly reduced multicollinearity between the variables thought to be determinants of consumption or investment. This provided for much more stable regression coefficients on variables in the model when changes to the model were made, and therefore, more reliable estimates of marginal impact.

2. First differencing eliminates the irrational tendency for the regression coefficients on a particular variable (e.g., the exchange rate) in imports and domestic goods demand equations not to add up to same variable’s coefficient in total demand equation when using standard AR(i) controls. The two parts together (demand for imports and demand for domestically produced goods) definitionally equal total consumption or investment. Adding the estimated effects of a particular variable on import demand and domestic demand should tell us precisely how total demand is affected. Statistical results should yield the same result, assuming regression does not provide illogical results. Statistical results do equal the arithmetic sum of these two parts, unless AR(i) controls are used with any of the equations.

For example, equations 9 -11 below provide statistical estimates of the impact of the exchange rate (and other variables) on demand for domestically produced, imported and total investment goods. Equation eleven’s relatively low Durbin Watson statistic indicates possible autocorrelation. Using a standard AR(1) control raises the Durbin – Watson statistic to more acceptable levels, but at the price of changing all of other regression coefficients in that equation so that the coefficients on a variable in the domestic and imports demand equations no longer add to the total effect, as they did – exactly - before the autocorrelation control was added!. Hence, questions arise about the reliability of our estimates. The situation is not improved by adding autocorrelation controls to the other equations.

To avoid this problem, first differencing is used here. Where first differencing is not successful in raising the Durbin Watson statistic to desired levels, the evidence suggests the coefficient is not adversely affected. For example, subtracting the (non-)autocorrelation plagued imports coefficient (eq. 10), from the (non-)autocorrelation plagued total investment coefficient for the same variable (eq. 9) yields exactly the value of a variable we find in the autocorrelation plagued domestic demand equation (eq. 11).

Arithmetic methods for estimating the effect of exchange rate changes on the GDP, consumption, investment, the trade deficit, and U.S. ownership of assets are developed and presented in sections 9-12 of this study. They depend heavily on the marginal effects of changes in exchange rates given by regression coefficients in our econometric models. The reliability of such estimates is greatly enhanced if the models have made serious efforts to control for all other major variables that affect consumption and investment. This provides better assurance that the estimated effects of the exchange rate are good estimates, and not estimates which mislead because they are also proxying for the effects of other consumption or investment determinants not controlled for in the testing process. Extensive efforts were made in Heim (2008a, b &c) to determine what theoretically – postulated variables belonged in these equations, and which lagged value of the variables was the most appropriate to use. The consumption and investment models used here utilize the findings from those studies coupled with the Federal Reserve’s (real) Broad exchange rate. They are described further below.

All data used in those studies was taken from the Council of Economic Advisors’ statistical appendix to the Economic Report of the President, 2002. Data Tables B2, B3, B7, B26, B54, B60, B73, B82, B90,
B95, B104, B106 and B110. However, additional multilateral trade weighted value of the dollar, i.e., the foreign exchange rate data, is taken from Table B110 of the *Economic Report of the President, 2001* and Table B108 of the 1997 *Economic Report of the President, 1997*. Exchange rate values 1960 - 1970 were assumed constant at 1970 levels, per the Bretton Woods protocols. All data are expressed in real 1996 dollars, or converted to same using the GDP deflator in Table B3.

Each regression below shows the estimated marginal effect (regression coefficient) for the explanatory variables, the t statistic associated with it, the percent of variance explained and the Durbin Watson autocorrelation statistic. Depending on the particular regression test and the number of lags used, our sample size was 36-38 observations from the 1960-2000 period. With this number of observations, throughout the remainder of the paper, marginal effects with a t-statistic of 1.8 are significant at the 8% level, 2.0 are significant at the 5% level and t-statistics of 2.7 are significant at the 1% level. Because of the simultaneity between the total consumption variable (C) in the GDP accounts, or its component part, domestic consumer goods (C₀), and income (Y) inherent in these equations, two stage least squares estimates of disposable income Δ(Y-T₀)₀ were used. The remaining right hand side variables were used as first stage regressors. Newey-West heteroskedasticity corrections were also made, generally improving t - statistics. Two Stage least Squares was also used with the investment equations because of simultaneity between investment and the economy’s growth rate (the accelerator variable).

There is some difficulty separating consumer imports out of total imports in the *Economic Report of the President*. This is because, as the Bureau of Economic Analysis (BEA) has confirmed, it does not categorize import and export data into same “C” and “I” and “G” categories used elsewhere in the national GDP accounts. Absent official determinations by BEA, economists must make their own evaluations of how to divide the data. It is not clear from Table 104 in the *Economic Report of the President*, for example, how much of the value of motor vehicle imports or petroleum imports are for business (inventory investment) vs. consumer use. Data on imported services (Table B-106) does not distinguish between imports of services by businesses and consumers, though one might suspect the former dominate. Nor do the services data extend back beyond 1974, so no deduction from total imports for business services imports could be made in calculating consumer imports.

Following Heim (2007), we then take as our definition of consumer goods and services imports all imports except for imports of capital goods and industrial supplies and materials. The theory behind this choice was that the best definition of “consumer” imports was the one whose variation was best explained (highest R²) by the variables theoretically thought to drive demand for consumer imports. Other definitions of consumer imports, did not explain consumer behavior as well and were rejected.

Hence, for consumer imports, the definition used is

\[(M_{m-ksm}) = \text{Total Imports (M)} - \text{(Capital Goods Imports + Imported Industrial Supplies and Materials(M_{ksm}))} \]

These definitions appear to be reasonable, if not exact, given the data available. Separate regressions were then run on total consumer demand, and separately for imported consumer goods alone. Results for the imports equation were subtracted from the results for the total consumption (C) equation, to estimate demand for domestically produced consumer goods. As noted earlier when discussing autocorrelation, the coefficients obtained in this manner (arithmetically) for each variable are exactly the same as those obtained statistically by regressing these same determinants on domestically produced consumer goods (C-M_{m-ksm}).

Investment imports were defined using the same process as imports of capital goods plus imports of industrial supplies and materials (M_{ksm}), i.e., total imports minus consumer imports.

Preliminary testing suggested that exchange rates have some lagged effects that go back as far as three years ago, so the average exchange rate for those years (XR_{0123}) was used. Individual variables for each year’s exchange rate were not used. High levels of multicollinearity between the individual years’
exchange rates made coefficient values for any one year change dramatically when another year’s exchange rate variable was added or deleted. However, the coefficients on the average exchange rate variables tended to precisely or approximately add up to the sum of the coefficients when separate exchange rate variables were used for each year. In addition, adding an additional year’s lag to the average increased explained variance, up through the three year lag. This suggests that the full effects of exchange rate changes take that long to achieve. For example, peoples’ demand may be conditioned on what they recall price has been in the recent past as well as what it is today. It may also be that there are long lead times required for delivery of some items, e.g., machinery. If so, this year’s actual purchases may have been the result of a prior year’s decision to purchase, based on a prior year’s price determined in part by that year’s exchange rate.

In section 9 below the results to the economic system attributable to a shock to exchange rates are used to estimate the resulting effects on the GDP, consumption and investment demand (both domestic and imports). Three separate methods for calculating these results are used. They yielded identical results:

1. The first of the three methods simply sums the three regression coefficient estimates of the effect of an exchange rate change on (1) domestically produced consumer goods and (2) investment goods, and (3) exports and uses the estimated multiplier/accelerator effect developed in Section 8 from the same econometric model to calculate the total effect on income and consumption.

2. A second method, commonly used in large scale econometric models such as Fair’s to calculate the effects of a shock was also used as a check on the first. This method involves estimating the consumption, investment and import equations from their determinants and combining them with exogenous information on export demand and government demand to (additively) calculate the GDP.

3. A Keynesian “IS” curve model calculated directly from our econometric results. This IS model is used to predict changes, modified by the model’s estimated multiplier effect, in the GDP likely to occur when the exchange rate shock occurs.

3. THE CONSUMER DEMAND MODEL:

We need a comprehensive theory of consumer demand so that in testing for exchange rate effects, we can control for changes caused by other things than the exchange rate itself. This paper uses a modified Keynesian theory of demand for consumer goods. It assumes that in general, the determinants of the demand for both domestic and imported consumer goods are the same as those mentioned in Keynes (1936), with the addition of two other variables. First, a “crowd out” variable is added, similar to the one used in investment studies to control for periods of limited credit availability which may occur in response to government deficits. Second, we also add an exchange rate variable.

Keynes argues in chapter 8 of the General Theory of Employment, Interest and Money (1936, pp.95-96) that income, wealth, fiscal policy (taxes) and possibly the rate of interest might influence consumption. However, he felt

... income...is, as a rule, the principal variable upon which the consumption-constituent of the aggregate demand function will depend...windfall changes in capital-values will be capable of changing the propensity to consume, and substantial changes in the rate of interest and in fiscal policy may make some difference ...

where “fiscal policy” is a reference to tax levels. In chapter 9 he also notes other factors that might affect the level of consumption spending: precautionary saving (for unknown, but potential, future needs), saving for known future needs (like retirement), and saving to finance improvements in future standards of living.
Heim (2008b) found that regression results on a modified Keynesian function of the following type explained about 90% of the variance in consumer spending in the 1960 - 2000 period:

\[C = \beta_1 + \beta_2 (Y-T_G) + \beta_3 (T_G - G) - \beta_4 (PR) + \beta_5 (DJ)_2 + \beta_6 (XR)_{AV0123} \]

(1)

where

\((Y-T_G) \) = Total income minus taxes, defined as the GDP minus the portion of total government receipts used to finance government purchases of goods and services, i.e., total government receipts minus the portion used to finance government spending on transfer payments not included in the GDP definition of government spending. This definition of income yields results very similar to the national income definition used by Simon Kuznets (1952) in his path-breaking work on consumption and income.

\((T_G - G) \) = The government deficit, interpreted as a restrictor of consumer as well as investment credit. Usually we will disaggregate this into two separate variables in regressions: \(\beta_{3A} T_{G(0)} \) and \(\beta_{3B} G \). because it has been found the effects of each on consumer spending differs, with the tax variable the more important. (Heim 2008a)

PR = An interest rate measure, the Prime rate, for the current period. This rate is a base rate for much consumer credit. It is deflated to get the “real” rate using the average of the past two year's CPI inflation rate.

DJ_2 = A stock market wealth measure, the Dow Jones Composite Average, lagged two years

XR_{AV0123} = The trade - weighted exchange rate (XR), averaged over four years. In our regressions, an average of the XR value for the current and past three years is used, denoted XR_{AV0123}. This is done to capture what preliminary studies showed was a slow, multiyear process of adjustment to exchange rate changes.

First difference versions, shown below, of this consumption function (1) were used to reduce the distorting effects of multicollinearity and non-stationarity inherent in most time series econometric models:

\[\Delta C_0 = \beta_2 \Delta (Y-T_G)_0 + \beta_3 \Delta (T_G - G)_0 - \beta_4 \Delta (PR)_0 - \beta_5 \Delta (DJ)_2 + \beta_6 \Delta (XR)_{AV0123} \]

(2)

or

\[\Delta C_0 = \beta_2 \Delta (Y-T_G)_0 + \beta_{3A} \Delta T_{G(0)} - \beta_{3B} \Delta G - \beta_4 \Delta (PR)_0 - \beta_5 \Delta (DJ)_2 + \beta_6 \Delta (XR)_{AV0123} \]

(3)

These last two equations are the same except that in (3) we have divided the crowd out variable into two variables. We will test these hypotheses, particularly (3), further below, and use the results to calculate the effects of exchange rate change on consumer demand.

Using the Federal Reserve’s real “Broad” exchange rate, , the government deficit variables, and the Keynesian variables, our regression findings for consumer demand model are as follows:

Total Consumer Demand

\[\Delta C_0 = .66 \Delta (Y-T_G)_0 + .49 \Delta T_{G(0)} + .04 \Delta G - 6.92 \Delta PR_0 + .62 \Delta DJ_2 + 2.83 \Delta XR_{AV0123} \]

\[R^2 = 92\% \]

\[D.W. = 2.0 \]

Demand for Imported Consumer Goods

\[\Delta (M_{m-ksm})_0 = .11 \Delta (Y-T_G)_0 + .30 \Delta T_{G(0)} - .20 \Delta G - 5.00 \Delta PR_0 + .34 \Delta DJ_2 + 3.03 \Delta XR_{AV0123} \]

\[R^2 = 85\% \]

Demand for Domestically Produced Consumer Goods

\[\Delta (C-M_{m-ksm})_0 = .55 \Delta (Y-T_G)_0 + .19 \Delta T_{G(0)} + .24 \Delta G - 1.92 \Delta PR_0 + .28 \Delta DJ_2 - .20 \Delta XR_{AV0123} \]

\[R^2 = 74\% \]

Though not presented here, the same models without the exchange rate variable had \(R^2 \) of 91, 77 and 74% respectively. The exchange rate appears to have a major influence on import demand, adding 8%-
points to explanatory power, but seems to have a minimal effect on domestic demand for consumer
goods, leaving the explanatory power of this domestic demand equation unchanged. As we will show in
section 8 below this is because the substantial negative income effect of declining exchange rates more
than offset by a positive substitution effect, leaving the net of the two effects, shown by the regression
coefficient close to zero and insignificant. The regression coefficients on the exchange rate variable
clearly suggest an immediate drop in demand for imports of $3.03 billion when the exchange rate drops
one point, and an increase in domestic demand of $0.20 billion. However, our confidence in our estimate
of the domestic marginal effect remains high, since it is the same as that obtained by subtracting the
import regression coefficient from the total consumption coefficient, and both of these are highly
significant. These coefficients will be used below in estimating the total impact on the economy of
deciles in the exchange rate, including subsequent multiplier effects.

4. THE INVESTMENT DEMAND MODEL

The demand for Investment goods may also decline when the exchange rate declines, lowering real
business income and raising import prices. How much of the decreased will be for domestic goods
compared to imports depends on the marginal propensities to invest (MPID or MPIm) in those goods in
response to a change in the economy’s real growth rate (i.e., the “accelerator effect”) caused by a
deciling exchange rate. A secondary decrease in Investment may occur due to multiplier effects of the
original change, reducing savings, causing increased crowd out effects.

If investment goods are a “normal” good, the effect on U.S.-produced investment goods should include a
positive substitution effect resulting from reduced import demand; if they are “inferior” goods in the
microeconomic sense of that word, the substitution effect, like the income effect, should be negative. I.e.,
if we find that demand for domestic investment goods declines in favor of imports when real income falls
due to a declining exchange rate, even though it means imports are becoming more expensive. Whether
the substitution effect is positive or negative and whether the income effect or substitution effect dominate
are empirical questions addressed with the test results below.

The investment model tested includes key variables traditionally thought to influence investment. See, for
example, Jorgenson (1971). Imported investment goods are defined as imported capital goods plus
imported industrial supplies and materials. The current period is denoted without a subscript; prior years
are subscripted with a -1 or -2. Since the variables in each are the same, the tested equations for
domestic (I_D) and imported (I_M) goods all take the general form

\[\Delta I_D = (\Delta I - \Delta M_{kam}) = \beta_{D1} \Delta ACC + \beta_{D2} \Delta DEP + \beta_{D3} \Delta CAP_{-1} + \beta_{D4} \Delta T_G - \beta_{D5} \Delta G - \beta_{D6} \Delta r_{-2} + \beta_{D7} \Delta DJ_{-2}
+ \beta D_{18} \Delta PROF_{-2} + \beta D_{9} \Delta XR_{AV0123} \] \(7\)

\[\Delta I_M = (\Delta M_{kam}) = \beta_{M1} \Delta ACC + \beta_{M2} \Delta DEP + \beta_{M3} \Delta CAP_{-1} + \beta_{M4} \Delta T_G - \beta_{M5} \Delta G - \beta_{M6} \Delta r_{-2} + \beta_{M7} \Delta DJ_{-2}
+ \beta M_{8} \Delta PROF_{-2} + \beta M_{9} \Delta XR_{AV0123} \] \(8\)

The variables included in these equations are

\[\Delta ACC = \text{An accelerator variable } \Delta(Y_t - Y_{t-1}) = \Delta GDP_t \]
\[\Delta DEP = \text{Depreciation, a measure of investment needed this year just to replace worn out plant }
\text{ and equipment} \]
\[\Delta CAP_{-1} = \text{A measure of last year’s capacity utilization level} \]
\[\Delta PROF_{-2} = \text{A measure of business profitability two years ago} \]

The other variables have the same meanings they had in the consumption equations, with lags as noted.
Our purpose here is not to analyze definitively the components of the investment function, but just to
provide estimates of the effect of the exchange rate on investment that have been obtained while
controlling for at least some of the other variables commonly thought to affect investment, and whose
influences might otherwise be picked up by the exchange rate variable due to intercorrelation.
The parameters in this investment demand model were estimated to be:
where might measure the secondary boost to income resulting from additional taxes collected as income grows. We calculating the full effects of a rise in real income due to exchange rate changes, it is important to also used by government deficits. Therefore, in in tax revenues, presumably by reducing crowd out caused by government deficits. Thus, in

Both the consumption and investment equations above show a positive effect on demand of an increase in tax revenues, presumably by reducing crowd out caused by government deficits. Therefore, in calculating the full effects of a rise in real income due to exchange rate changes, it is important to also measure the secondary boost to income resulting from additional taxes collected as income grows. We might also define tax changes that are government - enacted, i.e., exogenous, as approximately \(\Delta T_{EX} \), where
ΔT_{EX} = ΔT_{G} - .26 ΔY \quad \text{(or)} \quad ΔT_{G} = .26 Δ(Y) + ΔT_{EX} \quad (14)

We say "approximately, because T_{EX} also contains the regression error term.

7. A MODEL FOR CALCULATING MULTIPLIER, ACCELERATOR AND CROWD OUT EFFECTS OF EXCHANGE RATE CHANGES

To illustrate how these terms are used further below, the following definitions of the multiplier and accelerator are presented, using simplified versions of our above consumption and investment equations for ease of exposition:

The GDP (Y) is comprised of consumer goods (C), investment goods (I), goods and services produced for the government (G) and net exports (X-M):

\[Y = C + I + G + (X-M) \] \quad (15)

In a simple model of the economy, domestic demand for all consumer goods, imported and domestically produced, can be written as follows:

\[C = (c_0 + m_0) + (c_1 + m_{c1})(Y-T_G) + (c_2 + m_{c2}) T_G + (c_3 + m_{c3}) G \] \quad (16)

where \((Y-T_G)\) is total income generated producing the GDP minus total taxes; \(c_1 + m_{c1}\) are the marginal propensities to consume domestic and imported goods, \(T_G\) and \(G\) represent the variables measuring the extent to which consumer credit is crowded out by the government deficit. The disaggregated form of the deficit is used \((T_G,G\) separately) instead of just \((T_G - G)\) because testing above indicates that the effects of the two variables on crowd out are different.

Demand for investment goods in this simple model of the economy might be described as

\[I = I_0 + (I_1 + m_{I1}) ΔY - (I_2 + m_{I2}) r + (I_3 + m_{I3}) T_G + (I_4 + m_{I4}) G \] \quad (17)

where \(ΔY\) is a Samuelson “accelerator” variable, indicating \(I\) grows (accelerates) in response to the general growth in the economy, \(r\) is the real interest rate, \((I_1 + m_{I1})\) are the marginal propensities to purchase domestically produced or imported investment goods ut of a change in \(Y\). \((I_2 + m_{I2})\) are the marginal propensities to invest when interest rates change. \(T_G + G\) represent the investment credit crowd out variables, again disaggregated, and the marginal impact of crowd out is \((I_3 + m_{I3})\) or \((I_4 + m_{I4})\) depending on whether it is caused by taxes or government spending.

Import demand might be expressed as

\[M = M_C + M_I = m_0 + m_{c1} (Y-T) + m_{I1} ΔY - m_{I2} r + (m_{I2} + m_{I3}) T_G + (m_{I3} + m_{I4}) G \] \quad (18)

i.e., the demand for imported consumer or investment goods is driven by the same variables as is domestic demand.

Substituting (16), (17) and (18) into equation (15) gives

\[Y = (c_0 + I_0 - m_0) + c_1 (Y-T_G) + I_1 ΔY - I_2 r + G + X + (c_2 + I_3) T_G + (c_3 + I_4) G \] \quad (19)

i.e., the domestic GDP is a function of the demand for domestic \(C, I, G\) and \(X\) goods, as modified by crowd out problems. Collecting only the \(Y\) terms, we get

\[Y = \left[\frac{1}{1-c_1} \right] \times \left[(c_0 + I_0 - m_0) - c_1 T_G + I_1 ΔY - I_2 r + G + X + (c_2 + I_3) T_G + (c_3 + I_4) G \right] \quad (20)\]

\(\frac{1}{1-c_1} \) is the standard consumption multiplier cited in textbooks and would equal \(\frac{1}{1-.55} = 2.22 \).
using the marginal propensity to consume domestically produced goods from the Section 3 and 4 regressions above. However, if we separate \(\Delta Y \) into its separate components, \(I_1 \), \(Y \) and \(-I_1 \Delta Y\), and recollect our current year \(Y \) terms, we get a modified multiplier (or multiplier/accelerator) coefficient that combines traditional multiplier and accelerator effects:

\[
Y = \frac{1}{(1-c_1 - I_1)} \left[(c_0 + l_0 - m_0) - c_1 T_G - I_1 Y_1 - I_2 r + G + X + (c_2 + l_3) T_E + (c_3 + l_4) G \right] \tag{21}
\]

where the numerical value the accelerator/multiplier coefficient is \(\frac{1}{(-.55-.24)} = 4.76 \)

again using our regression results above. We can further augment this function by noting that the tax component \(T_G \) of the “crowd out” variables in both the consumption and investment equation grows as income grows, as shown in our tax growth model above. Also, our consumption and investment regressions above suggest that a rise in taxes depresses consumption spending by decreasing disposable income -$.57B for each billion increase in \(T_G \), but that the same rise in taxes stimulates consumer spending by +$.20B and investment spending by +$.44B, more than offsetting the negative impact of taxes on disposable income, for a net effect of +$.09B. Hence,

\[
(-c_1 + c_2 + l_3) T_G = (.55 + .19 + .45) T_G = (.09) T_G = (.09) (.26 Y + T_{EX}) = .02 Y + .09 T_{EX}
\]

Using this formulation and recombining the \(Y \) terms gives a further modified multiplier we will call the “Multiplier/Accelerator/Crowd Out” ("M/A/C") multiplier:

\[
Y = \frac{1}{(1-c_1 - I_1 - [c_1 + c_2 + l_3][.26])} \left[(c_0 + l_0 - m_0) - c_1 T_G - I_1 Y_1 - I_2 r + G + X + (c_2 + l_3) T_E + (c_3 + l_4) G \right] \tag{22}
\]

Expressed in first differences, which we used for econometric testing above, this becomes

\[
\Delta Y = \frac{1}{(1-c_1 - I_1 - [c_1 + c_2 + l_3][.26])} \left[-c_1 \Delta T_G - I_1 \Delta Y_1 - I_2 \Delta r + \Delta G + \Delta X + (c_2 + l_3) \Delta T_E + (c_3 + l_4) \Delta G \right] \tag{23}
\]

where the numerical value of M/A/C multiplier becomes \(\frac{1}{(-1.55-.24-.02)} = 5.26 \)

This is the multiplier we will use below to calculate the total effect of a change in the exchange rate on U.S. real income.

8. Income and Substitution Effects of a Declining Exchange Rate on Demand

Does the demand for imports decline when the real exchange rate drops? For “normal” goods, economic theory suggests both the income and the substitution effects should be negative for imports, since real income drops as import prices rise, and because of a substitution away from (now) higher price imports, each causing a decrease in demand. For normal domestically produced goods, theory suggests the income and substitution effects should work in opposite directions: substitution effects increasing domestic demand, as higher import prices cause people to shift from imports to domestic goods, income effects decreasing demand. (e.g., Wold & Jureen, 1953, Prager, 1993, etc.)

Our statistical results for consumption demand are consistent with this theory. Heim (2009) provides a method for separating the income and substitution effects of changes in real exchange rates on consumption. Application of this method to consumption yields the results given in Table 1 below, where regression coefficients on the exchange rate variable equal total effects, and clearly indicating consumer imports are normal goods, and where substitution effects clearly dominate.
Table 1: Consumer Goods: Income and Substitution Effects

<table>
<thead>
<tr>
<th></th>
<th>Domestic Goods</th>
<th>Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Effect</td>
<td>- $1.415 Billion</td>
<td>- $1.415 Billion</td>
</tr>
<tr>
<td>Substitution Effect</td>
<td>+ $1.615 Billion</td>
<td>- $1.615 Billion</td>
</tr>
<tr>
<td>Total Effect (=Coef.)</td>
<td>+ $0.200 Billion</td>
<td>- $3.030 Billion</td>
</tr>
</tbody>
</table>

However, application of this method to investment suggests investment imports may be inferior goods, as indicated in Table 2 below, where regression coefficients on the exchange rate variable equal total effects, the signs on the substitution effects clearly suggest investment imports are inferior goods, and where substitution effects clearly dominate.

Table 2: Investment Goods: Income and Substitution Effects

<table>
<thead>
<tr>
<th></th>
<th>Domestic Goods</th>
<th>Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Effect</td>
<td>- $2.485 Billion</td>
<td>- $2.485 Billion</td>
</tr>
<tr>
<td>Substitution Effect</td>
<td>- $2.885 Billion</td>
<td>+ $2.885 Billion</td>
</tr>
<tr>
<td>Total Effect (=Coef.)</td>
<td>- $5.370 Billion</td>
<td>+ $0.400 Billion</td>
</tr>
</tbody>
</table>

These results show the initial effects on demand for consumer and investment goods of a decline in the exchange rate, ceteris paribus. However, since every change in consumption or investment demand changes the GDP, which through multiplier effects further changes consumption and investment, etc., the result will be some multiple of the initial effects. The initial effect on domestically produced consumer goods (+0.20B), plus the initial effect on domestically produced investment goods (-5.37B), plus the initial effect on U.S. exports (+2.86B) will be subject to multiplier effects. This multiplier used (5.26) will be the M/A/C multiplier developed in Section 7 above.

9. THREE METHODS FOR CALCULATING THE IMPACT ON THE GDP OF A CHANGE IN THE EXCHANGE RATE

Three separate methods, all yielding the same results, are used to compute the effect of a change in the exchange rate on the GDP (Y):

Method 1: Use marginal effects estimates from the above domestic investment, consumption and export regressions to estimate the initial change in domestic consumption, investment and the GDP resulting from a one index point drop in the trade weighted exchange rate. Apply the M/A/C multiplier (5.26) to the result.

Method 2: Use the method favored in many large scale econometric models of the economy (Fair 2003, Pindyck & Rubinfeld 1991). This involves separately estimating ΔCD, ΔID, ΔG and ΔX (using the equations above), and simply summing the results to get ΔY.

Method 3: Formally Construct a Keynesian IS curve, and predict ΔY from its determinants and the multiplier implied by the function. It is a slightly more formal presentation of Method 1.

Each of the methods can serve as a check on the estimates obtained from the others.

9.1 Method 1

$ + 0.20B$ (Billion) - Total Estimated Effect (Positive Substitution Minus Negative Income Effect) Of A One Point Exchange Rate Decline On Demand For Domestically Produced Consumer Goods (C_D)

$ - 5.37B$ - Total Effect (Negative Substitution plus Negative Income Effect) Of Decline In Demand For Domestically Produced Investment Goods (I_D)

$ + 2.86B$ - Increase In Exports (X)
$ - 2.31B
- Initial Net Decline in Real U.S. Income from 1 point Exchange Rate Decline:

x 5.26
- Multiplier/Accel/Crowd Out (M/A/C) Effect

$ -12.15B
- Decline in Real Income (Y) after Multiplier/Accel/Crowd Out (MAC) Effects

- 3.16B
- Δ Taxes Due To M/A/C Effect @ Historic .26 Rate (.26*12.15 = 3.16B)

$ - 8.99B
- Δ(Y-T_G) = Decline In Disposable Income Associated With A One Point Decline In The Exchange Rate

To see the impact of decreased credit availability (crowd out) due to decreased tax collections:

- $0.60B = ΔC_D
 Due to Crowd Out Effect, Caused By Decreased Taxes = (.19)($ -3.16B)

- $0.95B = ΔC_M
 Due to Crowd Out Effect, Caused By Decreased Taxes = (.30)($ -3.16B)

With this information we can summarize the changes in consumption and saving resulting from the decrease in disposable income of $ 8.99B as follows:

$ - 8.99B
Δ(Y-T_G)
$ - 8.99B Δ(Y-T_G)
$ - 8.99B Δ(Y-T_G)

x .55 MPC_D
$ - 4.94B ΔC_D (Multip. Effect)

$ +0.20B Initial ΔXR_{AV0123} Effect

$ - 0.60B Crowd Out Effect

$ - 5.34B Total ΔC_D

9.2 Method 2:

From the econometric models in Sections 4, we see three variables through which investment is affected by changes in the exchange rate:

1. the decrease in the accelerator income variable in the investment equation,
 due to the decrease in GDP (including multiplier effects) caused by the one point decline in XR_{AV0123}

2. the decline in tax collections because of the decline in real income caused by the increase in import prices, and

3. through the one point decline in the exchange rate variable

In this case then, the estimated decline in domestic investment will be

ΔI_D = Δ(I-M_{ksm}) = .24 ΔACC +.45 ΔT_G + 5.37 ΔXR_{AV0123}

= $ - 9.71B

where the change in taxes ΔT_G is the difference between the change in gross income (ΔY) and the change in disposable income Δ(Y-ΔT_G) given above.

We can also estimate the decrease in demand for imported investment goods as

ΔI_M = Δ(M_{ksm}) = .05 ΔACC +.07 ΔT_G - 0.40 ΔXR_{AV0123}

= $ - 0.43B

By similar reasoning, we see that the changes in the demand for domestic and imported consumer goods are as follows, using the econometric results from Section 3:

ΔC_D = Δ(C-M_{m-ksm}) = .55 Δ(Y-T_G) +.19 ΔT_G - (0.20) ΔXR_{AV0123}

= $ - 5.34B (same result as method 1)

and

ΔC_M = Δ(M_{m-ksm}) = .11 Δ(Y-T_G) +.30 ΔT_G + 3.03 ΔXR_{AV0123}

= $ - 4.97B (same result as method 1)

So, by Method 2 we have
\[\Delta Y = \Delta C_D + \Delta I_D + \Delta G + \Delta X \]
\[= \$ - 5.34 - 9.71 + 0 + 2.86 \]
\[= \$ - 12.19 \text{ B (Same result as Method 1)} \]

9.3 Method 3:

Using the formal Keynesian “IS” curve method for calculating the GDP shown in Section 9, Eq. 23 above, holding all the other variables in that equation that could affect (\(\Delta Y\)) constant, except those shown below (since our hypothesis does not make them a function of exchange rate changes), we get the following “IS” curve:

\[\Delta Y = \Delta C_D + \Delta I_D + \Delta G + \Delta X \]
\[= (0.55(\Delta(Y-T_G)) + 0.19\Delta T_G - 0.20\Delta XR_{AV0123}) + (0.24 \Delta ACC + 0.45 \Delta T_G + 5.37\Delta XR_{AV0123}) + 0 - 2.86\Delta XR_{AV0123} \]
\[= \$ - 12.15 \text{ B (Same as Methods 1 and 2)} \]

10. EXCHANGE RATE EFFECTS ON THE TRADE DEFICIT AND U.S. ASSETS

The estimated decline in the U.S. trade deficit resulting from a one point decline in the exchange rate is the sum of the resulting decrease in imports and the increase in exports

\[\$ 4.97 \text{ B - Decline in } C_M \]
\[0.43 \text{ B - Decline in } I_M \]
\[0.286 \text{ B - Increase in X} \]
\[\$ 8.26 \text{ B - Decrease in Trade Deficit} \]
\[\text{Drop Associated with a 1 Point} \]
\[\text{Induced Decline in Real Income} \]
\[\$ - 3.06 \text{ B - Decrease in Trademember Owned Wealth (Savings) Resulting From Exchange Rate -} \]
\[\$ - 3.06 \text{ B - Decrease in Trademember Owned Wealth (Savings) Resulting From Exchange Rate -} \]

The annual decrease in savings of $3.06B is the estimate of the decline in normally expected domestic asset growth due to the exchange rate decline, which causes a decrease in real income and saving (asset accumulation). This decline in savings asset growth can be deducted from the annual decrease in U.S. assets required to fund the trade deficit ($8.26B). The two together mean U.S. ownership of (U.S.) assets will grow annually at an estimated $5.20 billion compared to the period before the decline of one point in the exchange rate, ceteris paribus.

Our reasoning is as follows: every trade deficit is financed by a transfer of ownership of domestically owned assets (including money), or claims to such assets, to other countries or their citizens. This is how the money is raised that allows one country to buy more goods from another than the other wants to buy from the first. A decline in the trade deficit reduces the need to sell off (or borrow against) domestic assets to finance the deficit. This decline in need to sell off domestic assets is partially offset by the decline in domestic savings (decline in annual growth in U.S. – owned assets) that occurs because the exchange rate drops. This decrease in savings results from the income decrease caused by simultaneous rise in consumer demand and export demand more than offset by the decline in investment demand resulting from the exchange rate decline. Putting this together with the decline in the trade deficit, it is estimated that a one point reduction in the exchange rate would result in a ($8.26B deficit decline – 3.06B savings decline = $5.20B) net increase in U.S. ownership of capital assets each year compared to what would have occurred if the exchange rate had not changed.

11. CONCLUSIONS

The analysis above indicates that when the Federal Reserve’s real broad trade - weighted exchange rate index falls by one point, the results are as follows:

1. From Method #2 above we have
 a. a decrease in demand for imported consumer and investment goods and services estimated...
b. a decrease in demand for domestically produced consumer and investment goods and services of $12.19B = (- 5.34B C_d, - 9.71 I_o + $2.86B X). Our study is too macroeconomic in nature to be able to say which specific industries are affected.

The trade deficit would likely decrease an estimated $8.26 billion, due to the $5.40B reduction in imported consumer and investment goods, and $2.86B increase in exports. Because a one point (~1%) drop in the exchange rate is small, so is the decline of the trade deficit. In dollars, the decline is only $8.3 billion. As a percent of GDP the trade deficit would only decline about one tenth of a percent from 4.34% to 4.25%, using 2000 values as the base year against which the decline is measured, as shown in Table 3 below.

2. However, in the period 2000 – 2009, The U.S. exchange rate dropped even more significantly. The Real Broad Index dropped 12.9 points (12.3%), from 104.8 to 91.9.

Using the 12.9 point drop in the real broad index during the 2000-09 period, suggests that this would have been associated with a decrease in the GDP over the 9 year period of $157.25 billion, or 1.7% of the GDP. This drop would also have been associated with a drop in the trade deficit of $106.6 billion. As a percent of the GDP, the trade deficit would drop 1.11 percentage points, from 4.34% to 3.23% of GDP ceteris paribus. (In 2005 dollars, the GDP decline would have been $207.6 billion, the trade deficit decline $140.7 billion. Percentage changes would remain the same.)

Using the numbers from Method 2, and multiplying them by 12.9, we can disaggregate the total GDP change into its component parts:

\[\Delta Y = \Delta C_d + \Delta I_o + \Delta G + \Delta X \]

\[- $157.25 \approx - $68.88 - $125.26B + 0 + $36.89B \]

The $157.25B decrease in GDP associated with the estimated 12.9 point (or 12.3%) 2000-09 decline in exchange rates, would have resulted in a 1.7% decrease in 2000 - level real GDP, ceteris paribus. However, Bureau of Economic Analysis data indicated the real GDP grew 15.7% during the 2000-2009 period. Presumably, had the exchange rate decline not occurred, it would have grown 1.7% more, increasing the average annual growth rate slightly - less than one fifth percent per year from 2.74% to 1.93%. The actual annual growth rate appears to have been lower than it might have been had the exchange rate not declined, but not much. Thus, the evidence indicates that the cheaper dollar of the 2000-2009 period did have a small negative effect on the U.S. GDP, consumption and investment overall, but these effects were swamped by larger scale macroeconomic events going on at the same time (e.g., post 9/11/01 military build up, increased investment spending) which provided far greater positive stimulus.

3. The $8.26 billion decline in the U.S. Trade deficit associated with a one point drop in the real Broad exchange rate index reduces the need for annual transfers of U.S. assets (including dollars) to foreign ownership. Other transfers are still needed to pay for the remaining trade deficit. Hence, there is a decline in the amount of U.S. owned assets that have to be

Table 3

<table>
<thead>
<tr>
<th>Exchange Rate Impact on GDP and Trade Balance</th>
<th>Real GDP</th>
<th>Imports</th>
<th>Exports</th>
<th>Trade Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual 2000 Data</td>
<td>$9224.00</td>
<td>$1532.00</td>
<td>$1132.00</td>
<td>$400.00 (4.34%)</td>
</tr>
<tr>
<td>Effect of 1Pt. Drop In XR</td>
<td>9211.85</td>
<td>1526.60</td>
<td>1134.86</td>
<td>$391.74 (4.25%)</td>
</tr>
<tr>
<td>Effect of 12.9Pt (12.3%) Drop In XR</td>
<td>9066.75</td>
<td>1462.00</td>
<td>1095.11</td>
<td>$293.45 (3.23%)</td>
</tr>
</tbody>
</table>
transferred to the rest of the world to pay for the U.S.’s excess of imports over exports. Subtracting the decrease in U.S. assets (decrease in new savings of $3.06 billion) associated with the decline of the exchange rate, we estimate each point decline in the exchange rate increases U.S. ownership of assets $5.2 billion, or $67.1 billion for the nine year period. (In 2005 dollars, $88.6 billion).

REFERENCES

ABOUT THE AUTHOR

John J. Heim has an MPA from Harvard University and a Ph.D. in Political Economy from SUNY Albany. He is Clinical Professor of Economics at Rensselaer Polytechnic Institute, Troy, NY, has taught there for 13 years. He has published 17 articles on the science underlying macroeconomics in the last three years. Prior to returning to academic life in 1997, he worked as economist and econometrician, an education finance analyst for NY State governor Wilson, Director of Fiscal and Budget Research for the minority party in the NY State Senate, Commissioner of Administration and Finance for the city of Buffalo, NY. He was also President of Heim Industries, Inc., a statistical software firm, and Assistant Executive Director of the Facilities Development Corporation.